

BEE 271 Spring 2017 Homework 2

Please answer the following questions. Each is worth 10 points.

 Referring to this circuit, fill in the timing diagram below, showing what happens to signals a, b, c and f. Assume all gate delays are 5 ns. You may not assume anything about the input signals prior to what's shown, so please indicate by crosshatching any signals that are unknown.

2. Prove the combining theorem using a Venn diagram.

14a. $x \bullet y + x \bullet y' = x$

3. What is an implicant? What is the difference between an implicant, a prime implicant and an essential prime implicant?

4. For the function f defined by this Karnaugh map, write the minterm equation $f = \Sigma m(...)$, identify the prime implicants and any essential prime implicants and then write the simplified SOP equation.

f		b1 k			
		00	01	11	10
b3 b2	00	1		1	1
	01				
	11		1		
	10	1	1	1	1

5. For the function g defined by this Karnaugh map, write the minterm equation $g = \Sigma m(...)$, identify the prime implicants and any essential prime implicants and then write the simplified SOP equation.

g	b1 b0				
		00	01	11	10
b3 b2	00		1	d	
	01		d	1	
	11			d	d
	10	1	1		

6. For the function h defined by this Karnaugh map, write the Maxterm equation $h = \Pi M(...)$, identify the prime implicants and any essential prime implicants and then write the simplified POS equation.

h	b1 b0 00 01 11 10					
		01	11	10		
b3 b2 00 01 11 10	0			0		
01						
11	d					
10	0	0	d	d		

7. For the function j defined by this Karnaugh map, write the Maxterm equation $j = \Pi M(...)$, identify the prime implicants and any essential prime implicants and then write the simplified POS equation.

j		b1 b0 00 01 11 10			
		00	01	11	10
b3 b2	00	0		0	0
	01				
	11 10		0		
	10	0	d	0	0

- 8. Use a Karnaugh map to find the simplest SOP equation for f(a, b, c) = $\Sigma m(1, 3, 5)$.
- 9. Use algebraic manipulation to derive the simplest SOP equation for f(a, b, c) = $\Sigma m(1, 3, 5)$, starting from the canonical SOP equation. (Hint: Does your Karnaugh map help you?)
- 10. Use a Karnaugh map to find the simplest POS equation for f(a, b, c, d) = $\Pi M(5, 15) + D(7, 13)$.